Original Research Communication

First Evidence for a Crosstalk Between Mitochondrial and NADPH Oxidase-Derived Reactive Oxygen Species in Nitroglycerin-Triggered Vascular Dysfunction

PHILIP WENZEL,^{1,6} HANKE MOLLNAU,^{1,6} MATTHIAS OELZE,¹ EBERHARD SCHULZ,¹ JENNIFER M. DIAS WICKRAMANAYAKE,¹ JOHANNA MÜLLER,¹ SWENJA SCHUHMACHER,¹ MARCUS HORTMANN,² STEPHAN BALDUS,³ TOMMASO GORI,⁴ RALF P. BRANDES,⁵ THOMAS MÜNZEL,¹ and ANDREAS DAIBER¹

ABSTRACT

Chronic nitroglycerin treatment results in development of nitrate tolerance associated with endothelial dysfunction (ED). We sought to clarify how mitochondria- and NADPH oxidase (Nox)-derived reactive oxygen species (ROS) contribute to nitrate tolerance and nitroglycerin-induced ED. Nitrate tolerance was induced by nitroglycerin infusion in male Wistar rats ($100~\mu g/h/4~day$) and in C57/Bl6, p47^{phox-/-} and gp91^{phox-/-} mice ($50~\mu g/h/4~day$). Protein and mRNA expression of Nox subunits were unaltered by chronic nitroglycerin treatment. Oxidative stress was determined in vascular rings and mitochondrial fractions of nitroglycerin-treated animals by L-012 enhanced chemiluminescence, revealing a dominant role of mitochondria for nitrate tolerance development. Isometric tension studies revealed that genetic deletion or inhibition (apocynin, 0.35 mg/h/4 day) of Nox improved ED, whereas nitrate tolerance was unaltered. Vice versa, nitrate tolerance was attenuated by co-treatment with the respiratory chain complex I inhibitor rotenone ($100~\mu g/h/4~day$) or the mitochondrial permeability transition pore blocker cyclosporine A ($50~\mu g/h/4~day$). Both compounds improved ED, suggesting a link between mitochondrial and Nox-derived ROS. Mitochondrial respiratory chain-derived ROS are critical for the development of nitrate tolerance, whereas Nox-derived ROS mediate nitrate tolerance-associated ED. This suggests a crosstalk between mitochondrial and Nox-derived ROS with distinct mechanistic effects and sites for pharmacological intervention. Antioxid. Redox Signal. 10, 1435–1447.

INTRODUCTION

THE ANTI-ISCHEMIC EFFECTS of organic nitrates are largely due to venous and coronary artery dilation, as well as improvement of collateral blood flow, which decrease myocardial oxygen consumption and are mediated by nitric oxide or a related species (2). However, the usefulness of organic nitrates is limited by tolerance and endothelial dysfunction (cross tolerance), which develops shortly upon continuous treatment. The

mechanisms underlying tolerance and cross tolerance remain incompletely understood and are most likely multifactorial (33). An early adaptation to long-term nitrate therapy involves neurohumoral adjustments, including activation of the renin-angiotensin-aldosterone system (40, 41), retention of sodium and water, and volume redistribution (15). These mechanisms impair the vasodilator and preload-reducing effects of the organic nitrates. Previously, we found that 3 day treatment of experimental animals with nitroglycerin (GTN) doubles vascular su-

¹2nd Medical Clinic, Department of Cardiology; ²Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.

³Department of Cardiology, University Hospital Hamburg–Eppendorf, Hamburg, Germany.

⁴Department of Internal Medicine, University of Siena, Italy.

⁵Cardiovascular Physiology, J.W. Goethe University, Frankfurt a. Main, Germany.

⁶PW and HM contributed equally to this study and should therefore both be considered as first author.

peroxide $(O_2^{\cdot-})$ production (38), which was also confirmed in human bypass material of GTN-treated patients (43). Subsequent studies of particulate fractions of vascular homogenates stimulated with NADH suggested that the source of $O_2^{\cdot-}$ in these vessels is a membrane-bound NADH/NADPH oxidase (Nox) (24, 36, 44).

Upon identification of the mitochondrial aldehyde dehydrogenase (ALDH-2) as a nitrate bioactivating enzyme (7), a follow-up study in ALDH-2-deficient mice (ALDH-2^{-/-}) stressed the importance of this enzyme for bioactivation and accordingly for the vasodilator potency of GTN and other organic nitrates (6, 49). Our laboratory further substantiated this concept in an animal model of in vivo tolerance and extended previous observations by demonstrating that mitochondria are a major source of ROS formation in response to both acute and chronic GTN challenges (10, 45). The importance of the ALDH-2 concept for clinical nitrate tolerance was further substantiated by two independent clinical studies in Asian subjects with a point mutated, dysfunctional ALDH-2 (27, 30). Since ALDH-2 is oxidatively inhibited by GTN administration (45, 48), these data provide a link between the oxidative stress and the impaired GTN biotransformation concept (33).

Further evidence for an important role of mitochondrial superoxide production in causing tolerance was provided with heterozygous deficiency in mitochondrial superoxide dismutase (Mn-SOD^{+/-}, which show increased basal levels of mitochondrial oxidative stress), where tolerance as well as cross tolerance were clearly enhanced when the activity and the expression of this free radical scavenging enzyme was decreased by heterozygous knockout (12, 32). Further, a recent study of Esplugues et al. demonstrated a role of mitochondria in the development of nitrate tolerance, since this phenomenon was associated with dysfunction of mitochondrial complex I and tolerance was normalized by administration of mitochondriatargeted antioxidants such as glutathione-ester and mito-quinone (16). A role of mitochondria for the development of nitrate tolerance was also proposed in a study by Gori et al., based on interference of cyclosporine A (CsA) with nitroglycerin-mediated preconditioning (18).

With this background, we hypothesized that ROS derived from the mitochondrial respiratory chain and from the NADPH oxidase might have differential effects on the development of nitroglycerin-triggered vascular dysfunction depending on their source of generation, and that they might interfere with each other in a crosstalk fashion.

MATERIALS AND METHODS

Reagents

For isometric tension studies, GTN was used from a Nitrolingual infusion solution (1 mg/ml) from G.Pohl-Boskamp (Hohenlockstedt, Germany). For induction of *in vivo* tolerance, GTN was used from a solution in ethanol (102 g/l) which was obtained from UNIKEM (Copenhagen, Denmark). L-012 (8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H, 3H)dione sodium salt) was purchased from Wako Pure Chemical Industries (Osaka, Japan). All other chemicals were of analytical grade and were obtained from Sigma-Aldrich (Steinheim, Germany), Fluka (Buchs, Switzerland), or Merck (Darmstadt, Germany).

Animals and in vivo treatment

Male Wistar rats (250 g), (Charles River, Sulzfeld, Germany) were equipped with micro-osmotic pumps 1003D from Alzet (Cupertino, CA) containing 450 mM GTN (100 µg/h, 6.6 µg/ kg/min in ethanol or the solvent as a control). GTN-infusion was performed as previously described (45) with or without the NADPH oxidase inhibitor apocynin (33.6 mg/kg/day, s.c.). Another co-treatment was GTN along with the inhibitor of KATPchannels glibenclamide (1 mg/kg/day), the inhibitor of mitochondrial complex I rotenone (10 mg/kg/day) or the blocker of mPTP opening CsA (5 mg/kg/day) as well as ethanol along with the opener of K_{ATP}-channels diazoxide (5 mg/kg/day) for 4 days. GTN and inhibitors were administrated in separate osmotic pumps. All animal treatment was in accordance with the Declaration of Helsinki and with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the United States National Institutes of Health and was granted by the Ethics Committee of the University Hospital Eppendorf and the University Hospital Mainz. We also used male mice aged 7-10 months on a C57/Bl6 background. Experiments were performed with 12-18 wt, p47^{phox-/-} or gp91^{phox-/-} mice. The gp91phox knockout mice were obtained from Jackson laboratories (Bar Harbor, Maine), whereas the p47phox knockout mice which are now available at Jackson laboratories, too, were provided by Steven M. Holland (NIH, Bethesda, MD). The animals were bred at the animal facility of the faculty of medicine at Frankfurt University. In vivo tolerance was induced by chronic infusion of mice with GTN in ethanol (50 µg/h, 120 nmol/min/kg for 4 days) by implanted micro-osmotic pumps (Alzet, model 1007D, 0.5 µl/h for 7 days) from Durect Corp. (Cupertino, CA). Infusion of the solvent ethanol served as a control. After this period, the animals were sacrificed, and heart and aorta were subjected to further analysis as described (12).

Isometric tension studies

Vasodilator responses to ACh and GTN were assessed with endothelium-intact isolated murine and rat aortic rings mounted for isometric tension recordings in organ chambers, as described previously (10, 38). The mouse aorta was preconstricted with prostaglandin $F_{2\alpha}$, whereas the rat aorta was preconstricted with phenylephrine.

Detection of oxidative stress in mitochondria and isolated aorta

Isolated mitochondria were prepared from rat hearts according to a previously published protocol, and ROS/RNS formation was detected by L-012 (100 μ M)-enhanced chemiluminescence as described (10, 12, 42). L-012 has a higher specificity for peroxynitrite than for superoxide (9), which may provide the basis for the high sensitivity of L-012 for GTN-triggered oxidative stress (11). Briefly, hearts from Wistar rats were glass/glass homogenized in HEPES buffer and subjected to centrifugation steps at 4°C of 1500 g for 10 min and 2,000 g for 5 min (the pellets were discarded). The resulting supernatant was centrifuged at 20,000 g for 20 min, and the pellet was resuspended in 1 ml of Tris buffer. The last centrifugation step was repeated and the pellet was finally resuspended in 1 ml of Tris buffer. The protein content was determined by the Lowry

method. Mitochondrial suspensions were diluted to a final protein concentration of 0.1 mg/ml in 0.5 ml of PBS buffer containing L-012 (100 μ M). ROS/RNS production was determined after stimulation with succinate (5 mM final concentration), malate/glutamate (2.5 mM each), malate/oxaloacetate which decays to pyruvate (2.5 mM each), or α -ketoglutarate (2.5 mM). In some experiments, we used modulators of mitochondrial function diazoxide (100 μM), glibenclamide (10 μM), rotenone $(5 \mu M)$, and CsA (200 nM). The chemiluminescence (CL) was registered at intervals of 30 s over 5 min with a chemiluminometer (Berthold Techn., Bad Wildbad, Germany) and the signal was expressed as counts/min at 5 min. Vascular superoxide production was determined using the highly selective chemiluminescence indicator reagent DiogenesTM, a luminol-peroxidase based assay (National Diagnostics, Atlanta, GA; 50% of total reaction volume) (8, 25). Briefly, aortas were isolated in chilled buffer, cut into 3 mM segments and incubated for 30 min at 37°C in 96-well plates (segments from one aorta were measured in triplicates) in Hanks' buffered salt solution (PAA Laboratories, Pasching, Austria). Afterwards a mixture of DiogenesTM containing dimethylsulfoxide (0.1%, vehicle for PMA) and PMA (final concentration 100 nM; Calbiochem, San Diego, CA) was added to the plate. Chemiluminescence was measured using a Mithras Microplate Luminometer (Berthold). 10-s readings were obtained for each ring over 40 min. The photon counts were normalized for the dry weight of aortic tissue and expressed as percentage change of control.

Calibration of oxidative stress (chemiluminescence) in mitochondria by HPLCbased measurement of 2-hydroxyethidium

Superoxide was also measured by a modified HPLC-based method to quantify ethidium and 2-hydroxyethidium levels, as previously described (51). Briefly, heart mitochondria were incubated with 50 µM DHE for 20 min at 37°C in PBS buffer and stored at -80°C. Upon thawing, DHE oxidation products were extracted by addition of 50% acetonitrile, centrifuged, and 50 μ l of the supernatant were subjected to HPLC analysis. The system consisted of a control unit, two pumps, mixer, detectors, column oven, degasser and an autosampler (AS-2057 plus) from Jasco (Groβ-Umstadt, Germany) and a C₁₈-Nucleosil 100-3 (125 × 4) column from Macherey & Nagel (Düren, Germany). A high pressure gradient was employed with acetonitrile and 25 mM citrate buffer pH 2.2 as mobile phases with the following percentages of the organic solvent: 0 min, 36%; 7 min, 40%; 8-12 min, 95%; 13 min, 36%. The flow was 1 ml/min and DHE was detected by its absorption at 355 nm, whereas 2hydroxyethidium and ethidium were detected by fluorescence (Ex. 480 nm/Em. 580 nm). The signal was normalized on protein content of the mitochondrial preparations. The 2-hydroxyethidium data was calibrated by different xanthine oxidase concentrations for which the superoxide formation rate was determined by the cytochrome c assay (for details, see Fig. 1).

GTN-induced ROS in Nox1 or Nox4 transfected cells

HEK293 cells were seeded into 12-well dishes and transfected with 0.3 μ g mouse Nox1, Noxa1, and Noxo1 (the Nox1 analogs of p47^{phox} and p67^{phox}), Nox4, or GFP (as a control)

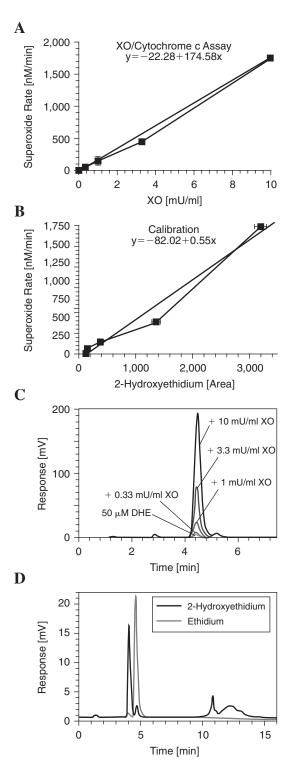
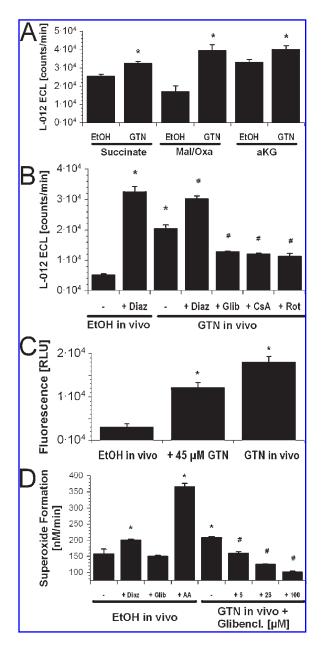



FIG. 1. Calibration of superoxide detection via 2-hydroxyethidium measurement by the cytochrome c assay. (A) Quantification of superoxide formation rates from xanthine oxidase (0, 0.33, 1, 3.3, and 10 mU/ml) and hypoxanthine (1 mM) in PBS with cytochrome c $(100 \mu M)$. The concentration range 0.01-10 mU/ml XO was used for linear regression. Rate [dA/min] is transformed to rate [nM O_2 -/min] using $E = \varepsilon_{550}$ *c*d using $\varepsilon_{550} = 19.5 \text{ mM}^{-1}\text{cm}^{-1}$ (23). (B) Superoxide formation rates were correlated with 2-hydroxyethidium (2-HE) formation using identical XO concentrations. (C, D) Representative chromatograms are shown for each XO concentration and for 2-HE and ethidium standards (each 500 nM).

using lipofectamine. ROS were determined by luminol (100 μ *M*) and horseradish peroxidase (1 U/ml)-driven chemiluminescence to detect extracellular hydrogen peroxide or L-012 (100 μ *M*)-enhanced chemiluminescence to detect intracellular peroxynitrite and superoxide anions in trypsinized cells in 500 μ l HEPES-modified Tyrode's solution using a chemiluminescence reader (LB9505 Berthold) as reported previously (3). ROS formation was determined in the presence or absence of GTN (500 μ *M*) and normalized to the signal obtained in the presence of solvent.

Western blot analysis

Isolated aortic tissue was frozen and homogenized in liquid nitrogen. Proteins were separated by SDS-PAGE and blotted

FIG. 2. Effects of GTN in vivo treatment on ROS and RNS formation in isolated mitochondria. (A) Oxidative stress in cardiac mitochondria was measured by L-012 (100 µM) enhanced chemiluminescence in the presence of malate/oxalacetate which decays to pyruvate (Mal/Oxa, each 2.5 mM), α -ketoglutarate (aKG, 2.5 mM), or succinate (5 mM). Data are mean \pm SEM of 15–24 independent experiments. *p < 0.05 vs. EtOH in vivo treatment. (B) Malate/glutamate (each 2.5 mM) dependent ROS and RNS formation in isolated mitochondria was measured by L-012 (100 μM) enhanced chemiluminescence in the presence of diazoxide (Diaz), glibenclamide (Glib), cyclosporin A (CsA), or rotenone (Rot). Data are mean \pm SEM of 4 independent experiments; *p < 0.05 vs. solvent control, $^{\#}p < 0.05$ vs. GTN in vivo. (C) Oxidative stress in cardiac mitochondria (0.1 mg/ml final protein) measured by amplex red (50 μ M) and horseradish peroxidase (0.1 μ M) fluorescence in the presence of malate/glutamate (2.5 mM). The signal was background corrected with respect to signal without mitochondria. Data are mean \pm SEM of 4 independent experiments; *p < 0.05 vs. EtOH in vivo. (**D**) Superoxide formation rate was measured by the DHE oxidation product 2-hydroxyethidium using an HPLC method. Superoxide yield was determined in response to succinate (5 mM), diazoxide (Diaz, 25 μ M), glibenclamide (Glib, 10 μ M), or antimycin A (AA, 20 μ g/ml) in mitochondria from control (EtOH) rats as well as to glibenclamide (0–100 μM) in mitochondria from tolerant (GTN) rats. Data are mean \pm SEM of 4–5 independent experiments; *p < 0.05 vs. solvent control, p < 0.05 vs. GTN in vivo.

onto nitrocellulose membranes. After blocking, immunoblotting was performed with antibodies against a-aktinin (the loading control), Nox1 (1:100, Santa Cruz Biotechnologies, Santa Cruz, CA) and Nox2 (gp91^{phox}, 1:1000, Transduction Laboratories, Heidelberg, Germany). Detection was performed by ECL with peroxidase conjugated anti-rabbit/mouse secondary antibodies (1:10,000, Vector Lab., Burlingame, CA). The antibody-specific bands were quantified by densitometry.

RT-PCR

mRNA expression was analyzed by quantitative real-time RT-PCR using an iCyclerTM iQ system (Bio-Rad Laboratories, Munich, Germany). Briefly, total RNA from rat aorta and heart was isolated according to the manufacturer's protocol of the RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden, Germany). $0.5 \mu g$ of total RNA was used for real-time RT-PCR analysis with the QuantiTectTM Probe RT-PCR kit (Qiagen). TagMan[®] Gene Expression assays (Applied Biosystems, Foster City, CA) for GAPDH were purchased as probe and primer sets. Primers for Nox2 (gp91^{phox}), Nox4, and p22^{phox} were obtained from MWG-Biotech (Ebersberg, Germany). Sequences of the primers and TaqMan® probes were (forward, reverse, and probe) CTTCTTGGGTCAGCACTGGC, GCAGCAAGATC-AGCATGCAG, and CACCTGCAGCCTGCCTGAATTTCA for Nox2: CTGTCCTGAACCTCAACT-GCAG. TGTGAT-CCGCGAAGGTAAGC, and CTTTTACCCATGTGCCGCA-CAGTCCT for Nox4; TACCTGACCGCTGTGGTGAAG, GCAGTAAGTGGAGGACAGCCC, and TGTTCGGGCCC-CTCACCAGAAATTAC for p22phox. The comparative Ct

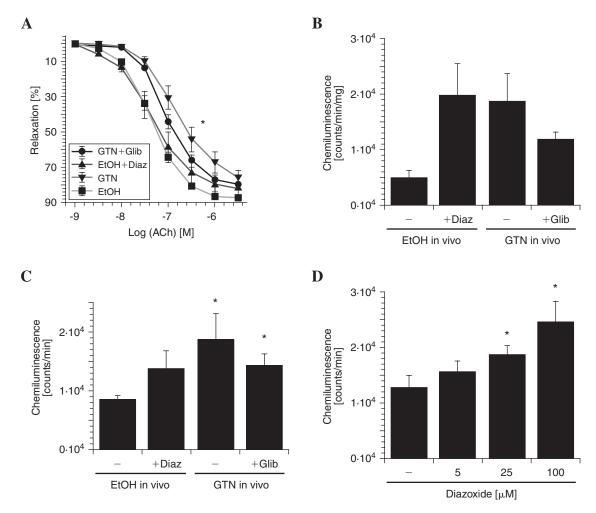


FIG. 3. Formation of reactive oxygen species (ROS) and vasodilator responses of isolated aortic vessel segments upon chronic treatment of Wistar rats with solvent (EtOH), EtOH/diazoxide, GTN, or GTN/glibenclamide. (A) Effects of *in vivo* co-treatment with diazoxide or glibenclamide on endothelial function of intact aorta. Concentration-relaxation curves for acetylcholine (ACh) were obtained by isometric tension recordings of aortic segments. Data are mean \pm SEM of 8 independent experiments with aortae from three rats/group. (B and C) ROS formation in isolated aortic rings (B) or M/G stimulated heart mitochondria (C) was measured by L-012 (100 μ M) enhanced chemiluminescence. Data are mean \pm SEM of 4 (B) or 8 (C) independent experiments with tissue from three rats/group. (D) Effect of diazoxide (0–100 μ M) on mitochondrial ROS formation was determined in succinate stimulated heart mitochondria by L-012 ECL. Data are mean \pm SEM of 8 independent experiments, *p < 0.05 vs. solvent control.

method was used for relative mRNA quantification (28). Gene expression was normalized to the endogenous control, GAPDH mRNA, and the amount of target gene mRNA expression in each sample was expressed relative to that of control.

Statistical analysis

Results are expressed as mean \pm SEM. One-way ANOVA (with Bonferroni's or Dunn's correction for comparison of multiple means) was used for comparisons of vasodilator potency and efficacy, L-012-, lucigenin- and Diogenes-derived chemiluminescence, as well as protein or mRNA expression, cellular ROS/RNS detection, and mitochondrial respiration. The EC₅₀ value for each experiment was obtained by log-transformation. P values < 0.05 were considered significant. * indicates significance vs, solvent control.

RESULTS

ROS/RNS formation in isolated mitochondria and pharmacologic inhibition of complex I of the mitochondrial respiratory chain and the mitochondrial permeability transition pore (mPTP)

We tested different substrates of mitochondrial respiration and observed that in addition to succinate (complex II), malate/oxaloacetate (complex I), and α -ketoglutarate (a substrate of the lipoyl-dehydrogenase subunit of α -ketoglutarate dehydrogenase generating NADH which feeds into complex I) were all able to significantly increase the L-012-derived chemiluminescence signal in isolated mitochondria from GTN-treated

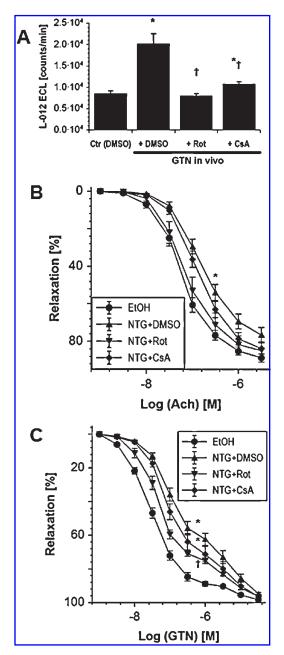


FIG. 4. Formation of reactive oxygen and nitrogen species (ROS/RNS) and vasodilator responses of isolated aortic vessel segments upon chronic treatment of Wistar rats with GTN, GTN/rotenone, or GTN/cyclosporine A. (A) ROS/RNS formation in isolated mitochondria was measured by L-012-enhanced chemiluminescence. Data are mean \pm SEM of 16 independent experiments; *p < 0.05 vs. solvent control, †p < 0.05 vs. GTN-DMSO. (B and C) Effects of *in vivo* co-treatment with rotenone or CsA on tolerance and cross-tolerance of intact aorta. Concentration-relaxation curves for acetylcholine (ACh) (B) and nitroglycerin (GTN) (C) were obtained by isometric tension recordings of aortic segments. Data are mean \pm SEM of 12–16 (B) and 15–16 (C) independent experiments. For statistical analysis see Table I (B and C); *p < 0.05 vs. solvent control and †p < 0.05 vs. GTN-DMSO (A).

rats (Fig. 2A). However, one should note that oxaloacetate decays to pyruvate and that freshly prepared stocks yielded significantly lower signals than older stocks (not shown). Malate/glutamate (complex I)-dependent ROS/RNS formation was significantly increased in the GTN in vivo treated group (Fig. 2B). This increase could be mimicked by in vitro incubation of control mitochondria with the KATP-channel opener diazoxide. The KATP-channel inhibitor glibenclamide attenuated the GTN-induced increase (Fig. 2B). These observations were further supported by investigation of the concentrationdependency of the diazoxide effect starting at 5 μM (Fig. 3D) and in vivo administration of diazoxide in control animals and glibenclamide in GTN-treated rats (Fig. 3A-C). In vivo diazoxide treatment slightly impaired endothelial function (Ach reponse) and increased vascular and mitochondrial ROS/RNS formation in control (EtOH) rats, whereas in vivo glibenclamide therapy improved endothelial dysfunction and oxidative stress in tolerant (GTN) animals. Also rotenone and CsA blocked the GTN-induced increase (Fig. 2B). We also detected increased GTN-induced mitochondrial ROS/RNS formation using amplex red/horseradish peroxidase detection (Fig. 2C). In addition, superoxide was specifically measured by 2-hydroxyethidium detection (Fig. 2D) and formation rates were determined by calibration with xanthine oxidase and cytochrome c (Fig. 1). Diazoxide caused a small but significant increase in superoxide formation in mitochondria from control (EtOH) rats, glibenclamide had no effect, antimycin A yielded almost 2-fold more superoxide and GTN in vivo treatment significantly increased superoxide formation rate, which was dose-dependently inhibited by glibenclamide. In vivo co-treatment with the complex I inhibitor rotenone or the mPTP blocker CsA significantly improved GTN-induced mitochondrial oxidative stress (Fig. 4A). Moreover, these compounds improved GTN-triggered ED and nitrate tolerance (Fig. 4B and C). Rotenone completely normalized the impaired acetylcholine response upon GTN-treatment, whereas CsA only slightly improved endothelial function. For EC50 values and statistics, see Table 1. In conclusion, we demonstrate here that GTN treatment triggers mitochondrial ROS/RNS formation, which was blocked by CsA, rotenone, and glibenclamide, and mimicked by diazoxide. Most importantly, CsA and rotenone not only affected the tolerance but also endothelial dysfunction of aorta, suggesting a causal role of mtROS/RNS for both phenomena.

ROS/RNS formation in isolated aortic segments and pharmacologic inhibition of Nox proteins

It has been previously shown that GTN in vivo treatment increases vascular ROS/RNS formation in intact aortic rings. We here demonstrate that the vascular ROS/RNS formation in response to activation of protein kinase C with phorbol myristate (PMA) is substantially increased in aortas from GTN-treated rats as compared to the solvent controls (Fig. 5A). This observation may indicate that Nox, which is activated upon PKC stimulation, may contribute to increased oxidative stress in the setting of tolerance. To gain further insight in the importance of a potential Nox -dependent mechanism, GTN-treated rats were co-infused with the Nox inhibitor apocynin.

In vivo treatment	Potency, EC_{50} (-log M)		Efficacy, max. relaxation (%)	
	ACh	GTN	ACh	GTN
WT + EtOH	$6.9 \pm 0.1 \ (n=7)$	$6.6 \pm 0.1 \ (n=7)$	$72 \pm 5 \ (n=7)$	$84 \pm 3 \ (n=7)$
WT + GTN	$6.9 \pm 0.1 \ (n = 7)$	$5.9 \pm 0.1 \ (n = 7)^*$	$52 \pm 4 \ (n = 7)^*$	$78 \pm 2 \ (n = 7)$
$p47^{phox-/-} + EtOH$	$7.0 \pm 0.1 \ (n = 11)$	$6.9 \pm 0.1 \ (n = 12)$	$72 \pm 5 \ (n = 11)$	$80 \pm 4 \ (n = 12)$
$p47^{phox-/-} + GTN$	$7.0 \pm 0.1 \; (n = 11)$	$5.9 \pm 0.1 \ (n = 9)^*$	$67 \pm 4 \ (n = 11)$	$79 \pm 3 \ (n = 9)$
$gp91^{phox-/-} + EtOH$	$7.0 \pm 0.1 (n = 9)$	$6.2 \pm 0.1 \ (n=9)$	$63 \pm 4 \ (n = 9)$	$70 \pm 2 \ (n = 9)$
$gp91^{phox-/-} + GTN$	$7.1 \pm 0.1 \ (n = 10)$	$5.7 \pm 0.1 \ (n = 10)^*$	$60 \pm 2 \ (n = 10)$	$63 \pm 3 \ (n = 10)^*$
Control (EtOH)	$7.2 \pm 0.1 \ (n = 14)$	$7.4 \pm 0.1 \ (n = 16)$	$88 \pm 2 \ (n = 14)$	$98 \pm 1 \ (n = 16)$
GTN + DMSO	$6.8 \pm 0.2 (n = 16)$	$6.6 \pm 0.2 \ (n = 16)*$	$77 \pm 4 \ (n = 16)^*$	$95 \pm 1 \ (n = 16)$
GTN + rotenone	$7.2 \pm 0.2 (n = 15)$	$7.1 \pm 0.1 \ (n = 15)^{\dagger}$	$85 \pm 4 \ (n = 15)$	$96 \pm 1 \ (n = 15)$
GTN + CsA	$6.9 \pm 0.1 \ (n = 12)$	$6.9 \pm 0.2 \ (n = 16)^*$	$84 \pm 3 \ (n = 12)$	$96 \pm 1 \ (n = 16)$
Control + apocynin	$7.5 \pm 0.1 \ (n = 8)$	$7.7 \pm 0.1 \ (n=7)$	$89 \pm 3 \ (n = 8)$	$100 \pm 0 \ (n = 7)$
GTN	$7.0 \pm 0.1 \ (n = 11)^{\ddagger}$	$7.2 \pm 0.1 \ (n = 14)^{\ddagger}$	$74 \pm 3 \ (n = 11)^{\ddagger}$	$98 \pm 1 \ (n = 14)$
GTN + apocynin	$7.2 \pm 0.1 \ (n = 10)$	$7.0 \pm 0.1 \ (n = 14)^{\ddagger}$	$83 \pm 3 \ (n = 10)^{\S}$	$97 \pm 2 \ (n = 14)$

Table 1. Vasodilator Potency of ACh and GTN in Vessels from Wild Type, p47^{phox-/-} or gp91^{phox-/-} Mice, as Well as Wistar Rats ± Apocynin, Rotenone, or Cyclosporine A upon Chronic Treatment with GTN

GTN *in vivo* treatment resulted in a significant increase in vascular reactive oxygen and nitrogen species [most probably the RNS peroxynitrite (1, 21, 47), see Fig. 7 as well as results on Nox-transfected cells] formation, which was completely normalized by apocynin co-infusion (Fig. 5B). Apocynin co-infusion partially corrected endothelial dysfunction (cross-tolerance), whereas importantly tolerance was completely unaffected by the Nox inhibitor (Fig. 5C and D, Table 1). In conclusion, we here demonstrate that GTN treatment increases vascular oxidative stress which was normalized by apocynin. Most importantly, apocynin only affected the endothelial dysfunction of aorta but failed to improve the tolerance, suggesting that NADPH oxidases only play a causal role for endothelial function.

Effect of genetic deficiency in Nox subunits p47^{phox} or gp91^{phox} on vasodilator responses in response to organic nitrate treatment

To define the role of Nox for the development of nitrate tolerance, we used mice with genetic deficiency in the cytosolic subunit p47phox or the membrane-located subunit gp91phox. In aortas from C57/Bl6 control mice, GTN *in vivo* treatment induced a marked degree of cross-tolerance (impaired responsiveness to the endothelium-dependent vasodilator ACh) as well as tolerance (impaired responsiveness to GTN) (Fig. 6A). Interestingly, cross-tolerance was absent in p47phox $^-$ and gp91phox $^-$ deficient mice but the vasodilator potency (EC50) of GTN (both acutely and after tolerance induction) was unaffected, pointing to a specific role of Nox in the development of GTN-induced endothelial dysfunction (Fig. 6B and C). In conclusion, we here demonstrate that genetic deletion of essential NADPH oxidase subunits eliminates GTN-triggered endothelial dysfunction, whereas tolerance is not affected.

ROS formation in Nox1/Nox2-transfected cells

The effect of acute GTN administration on cultured cells was determined with L-012 as a measure of intracellular ROS/RNS (most probably peroxynitrite) formation or with luminol/horseradish peroxidase as a measure of extracellular hydrogen peroxide. It was previously shown that GTN in vivo treatment of animals and cells results in significantly increased 3-nitrotyrosine levels (1, 21, 47) which is a footprint of peroxynitrite formation (a strong nitrating agent) (4). Moreover, the inhibitors used in these studies are commonly employed to scavenge peroxynitrite and free radicals (NO2-radical and HO-radical) derived from it: uric acid, hydralazine, and ebselen (1, 11, 21). Finally, L-012 has a higher specificity for peroxynitrite than for superoxide (9). GTN enhanced L-012 chemiluminescence in control cells (transfected with GFP) as well as in cells transfected with subunits of Nox1 or Nox4 consisting NADPH oxidase leading to a 5- to 15-fold increase as compared to unstimulated control (Fig. 7A). The overall L-012 signals in Nox1-transfected cells were increased almost 250-fold over GFP-transfected control (compare left and middle panel), whereas transfection with the constitutive Nox4 isoform only resulted in a 2- to 6-fold increase in signal (compare left and right panel). In contrast, GTN treatment caused no increase in hydrogen peroxide levels (Fig. 7B). Also preincubation of the cells for 4 h with GTN (50 µM) caused no increased Nox activity in these cells (not shown).

Effect of in vivo GTN treatment on protein and mRNA expression of Nox subunits

The effect of GTN *in vivo* on Nox1 and Nox2 was determined by protein expression. No significant changes could be established (Fig. 8A). Likewise, vascular mRNA expression of

^{*}p < 0.05 vs. solvent (EtOH) group; †p < 0.05 vs. GTN-DMSO, and †p < 0.05 vs. Ctr/apocynin, and \$p < 0.05 vs. GTN.

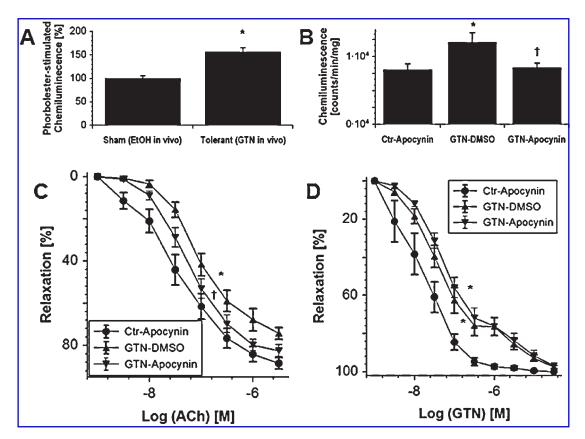
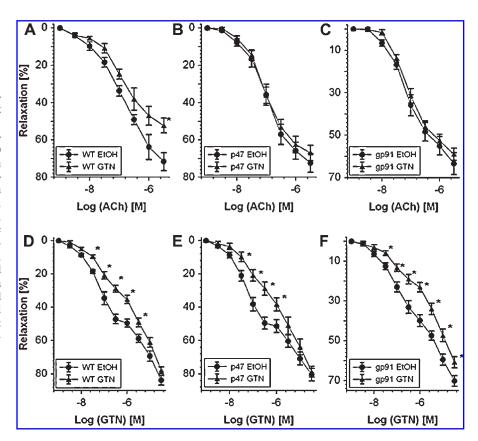


FIG. 5. Effects of GTN *in vivo* treatment on phorbol ester-stimulated vascular oxidative stress and vasodilator responses of isolated aortic vessel segments upon chronic treatment of Wistar rats with GTN or GTN/apocynin. (A) ROS formation in isolated aortic segments was measured by Diogenes-enhanced chemiluminescence upon stimulation with PMA (100 n*M*). Data are mean \pm SEM of 6 independent experiments and the signal was normalized to the dry weight of the tissue; *p < 0.05 vs. solvent control. (B) Effects of *in vivo* co-treatment with the NADPH oxidase inhibitor apocynin on ROS/RNS production of intact vascular rings. ROS/RNS production was quantified using L-012 (100 μ M) enhanced chemiluminescence. (C and D) Effects of *in vivo* co-treatment with apocynin on tolerance and cross-tolerance of intact aorta. Concentration-relaxation curves for acetylcholine (ACh) (C) and nitroglycerin (GTN) (D) were obtained by isometric tension recordings of aortic segments. Data are mean \pm SEM of 6–10 (B) and 7–14 (C and D) independent experiments. For statistical analysis see Table I (C and D) or *p < 0.05 vs. Ctr-Apocynin and †p < 0.05 vs. GTN-DMSO (B).

Nox2, Nox4, and the cytosolic subunit p22^{phox} was not affected by the GTN treatment (Fig. 8B). Similar observations were made with cardiac tissue (Fig. 8C).

DISCUSSION


With the present study, we show for the first time that a crosstalk of ROS/RNS exists between mitochondrial respiratory chain and vascular NADPH oxidase in nitroglycerin-triggered vascular dysfunction. We provide evidence that development of tolerance in response to GTN *in vivo* treatment depends primarily on mitochondrial ROS/RNS formation, whereas GTN-induced endothelial dysfunction involves the vascular Nox activity. Importantly, GTN-induced endothelial dysfunction was clearly attenuated by *in vivo* treatment with the NADPH oxidase inhibitor apocynin and was prevented in Nox subunit knockout animals. These results clearly demonstrate

that nitrate tolerance and cross tolerance are different entities and are mediated by two different enzymatic superoxide sources.

Mitochondrial ROS/RNS sources rather than the vascular NADPH oxidases mediate nitrate tolerance

Previously, we have demonstrated that stimulation of tissue homogenates from tolerant animals with NADH results in increased ROS formation in the setting of tolerance (NADH was used to demonstrate involvement of the previously so-called NADH/NADPH oxidase) (36). Since the increased superoxide signal of intact vessels of GTN-treated animals was inhibited by diphenyleneiodonium (36), we speculated that vascular Nox may account primarily for increased oxidative stress in the setting of tolerance. It is also important to note that the previously observed increase in NADH oxidase activity was obtained in homogenates using lucigenin in a concentration of 250 μM and

FIG. 6. Effects of NADPH oxsubunit knockout idase (p47^{phox-/-} and gp91^{phox-/-} mice) on the development of endothelial dysfunction (A-C) and nitrate tolerance (D-F) in response to GTN in vivo treatment. Concentration-relaxation curves for acetylcholine (ACh, **A-C**) and nitroglycerin (GTN, **D-F**) were obtained by isometric tension recordings of aortic segments from wild type (A, D), p47^{phox-/-} $(\mathbf{B},\mathbf{E}),$ gp91phox $^{-/-}$ (C, F) mice. Data are mean \pm SEM of 7 (wild type), $9-12 (p47phox^{-/-})$, and $9-10 \text{ (gp}91^{\text{phox}-/-}\text{)}$ independent experiments; *p < 0.05 vs. Ctr-EtOH.

therefore in a concentration where redox cycling between lucigenin and NADH has been reported (22, 26).

With the present studies we can demonstrate that mitochondrial ROS/RNS formation in response to acute and chronic GTN administration was increased in the presence of substrates for mitochondrial complexes I and II (Fig. 2A-C), pointing to an important role of this subcellular compartment for development of tolerance. GTN treatment clearly increased mitochondrial ROS/RNS production which was inhibited by rotenone and CsA in vitro (Fig. 2B). Moreover, the opener of KATP-channels diazoxide increased the mitochondrial ROS/RNS signal to a similar extent as compared to the GTN-treated group, and the inhibitor of KATP-channels glibenclamide decreased the ROS/ RNS signal in the GTN-treated group. Since diazoxide at higher concentrations has been demonstrated to interfere with mitochondrial respiration (14) (e.g., via blockade at complex II), we have performed experiments on diazoxide concentrationdependent ROS formation which point to a specific role of K_{ATP}-channel opening for nitrate tolerance and endothelial dysfunction (Fig. 3). Diazoxide in vivo treatment mimicked GTNtriggered tolerance, whereas glibenclamide co-therapy improved GTN-induced dysfunction (Fig. 3). Therefore, one may speculate that K_{ATP}-channels in mitochondria are important for development of tolerance. An important role of mitochondria was further supported by beneficial in vivo effects of the complex I inhibitor rotenone and the mPTP blocker CsA on GTNinduced oxidative stress and tolerance (Fig. 4).

Further support for an important role of mitochondria in the development of nitrate tolerance was provided by our previous studies in Mn-SOD^{+/-} mice where we could demonstrate that these mice were clearly more susceptible to nitrate tolerance development (12, 32). In addition, recent studies revealed that mitochondria-targeted antioxidants efficiently improve nitrate tolerance (16) and that GTN treatment mimics ischemic preconditioning (a process which obviously involves mitochondria) (18). The possible sources of mitochondrial ROS are summarized in the hypothetical scheme (Fig. 9). Previous studies have reported an increase in mitochondrial respiration in response to organic nitrates and swelling of mitochondria (39).

Vascular NADPH oxidases mediate endothelial dysfunction in response to nitroglycerin treatment

Previously, we have shown that tolerance, cross tolerance and increase in sensitivity to vasoconstrictors was improved by *in vitro* and *in vivo* treatment with inhibitors of protein kinase C (34, 37). With the present studies, we can show that upon incubation of intact aortic rings from control and tolerant aortas with a direct activator of protein kinase C, PMA, the luminol-derived chemiluminescence was clearly enhanced in tolerant aorta as compared to control, which might be compatible with the view that *in vivo* GTN treatment leads to an increase in Nox activity and/or expression (Fig. 5A).

To test whether GTN can activate the vascular Nox in vitro, HEK 293 cells were transfected with the NADPH oxidase subunits Nox1- or Nox4 (Fig, 7). The results clearly show that transfection with Nox subunits does not further enhance GTN-

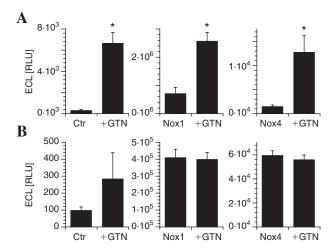


FIG. 7. Effects of GTN in vitro treatment on hydrogen peroxide or peroxynitrite formation in cultured cells. Formation of peroxynitrite (L-012) (A) or hydrogen peroxide (luminol/HRP) (B) in GFP- (control), Nox1- or Nox4-transfected cells in response to acute (500 μ M) GTN challenges. Data are mean \pm SEM of 6 independent experiments; * $p < 0.05 \ vs$. GTN-treated group.

induced ROS/RNS production. Also preincubation of HEK 293 cells with GTN for 4 h did not result in an activation of Nox (not shown), which suggests that GTN is not able to activate the oxidase *in vitro*. One possible explanation might be that the activation of vascular Nox is linked to a stimulation of the circulating renin-angiotensin-aldosterone-system (RAAS), where increases in circulating angiotensin II and/or aldosterone may increase mRNA or protein expression of vascular NADPH oxidase subunits in aortas from in vivo GTN-treated animals or may cause an activation of these oxidases. To address this issue, we quantified mRNA expression of NADPH oxidase subunit in aortas from in vivo GTN-treated animals. In accordance with previous results at the mRNA level (46), the mRNA and protein expression of all tested subunits/homologues Nox2 (gp91^{phox}), Nox4, and p22^{phox} was not altered or even decreased in response to GTN treatment (Fig. 8), arguing against an involvement of the oxidase in nitrate tolerance development. Further evidence for a lack of involvement of the NADPH oxidase in contributing to tolerance development was provided by the fact that the Nox inhibitor apocynin failed to modify tolerance and that knockout of NADPH oxidase subunits such as p47phoxand gp91^{phox} did not result in any modification of the degree of nitrate tolerance.

On the contrary, the NADPH oxidase inhibitor apocynin completely suppressed the L-012 chemiluminescence signal (Fig. 5) in vessels from *in vivo* GTN-treated animals. Likewise, *in vivo* treatment with apocynin had a significant effect on endothelial dysfunction induced by the organic nitrate. To further analyze the potential role of the NADPH oxidase in being involved in GTN-induced endothelial dysfunction, we treated p47^{phox}- and gp91^{phox}-deficient mice with GTN. Importantly, these mice did not exhibit any cross tolerance to endothelium-dependent vasodilators at all, pointing towards a crucial role of the vascular NADPH oxidase in mediating GTN-induced endothelial dysfunction (Fig. 6). Thus, it became apparent that the two major

side effects of GTN such as tolerance and GTN-induced endothelial dysfunction are mediated by two different superoxide producing enzymatic systems. Of these, the one located in mitochondria appears to be important for tolerance development; the other is the vascular NADPH oxidase, which is important for mediating the "side effect" endothelial dysfunction.

Despite the more recent demonstration that the high affinity pathway of GTN metabolism is mediated by the ALDH-2, there is no doubt that GTN-induced ROS/RNS production is one of the key events causing the phenomenon of nitrate tolerance (45). The ROS concept of tolerance was further substantiated by our recent findings that increasing the activity of the free radical scavenging enzyme heme oxygenase-1 prevents tolerance as well as cross tolerance in response to GTN (50).

Although we understand to some extent the mechanisms underlying increased mitochondrial superoxide production in response to GTN treatment, the precise pathway of activation of

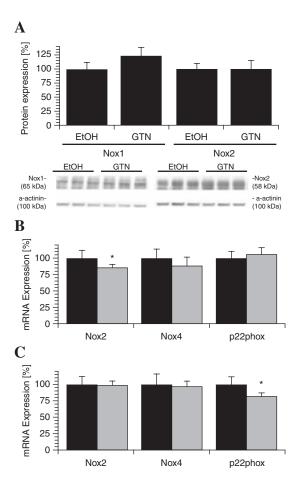
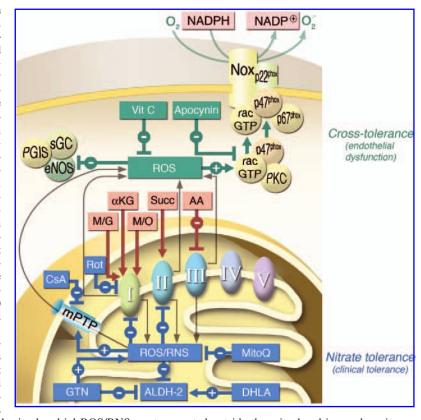



FIG. 8. Effects of *in vivo* treatment with GTN on the expression of Nox subunits. (A) Nox1 and Nox2 protein expression was measured in response to ethanol or nitroglycerin (GTN) *in vivo* treatment. Data are mean \pm SEM of 8–11 independent experiments and original blots are representative for three of them. Nox2, Nox4, and p22^{phox} mRNA expression in aortic (B) or heart tissue (C) was measured in response to ethanol (*black*) or GTN (*gray*) *in vivo* treatment. Data are mean \pm SEM of 10–12 independent experiments; *p < 0.05 vs. ethanol *in vivo*

FIG. 9. Hypothetical mechanisms of a crosstalk between mitochondrial and Nox-derived ROS in vascular dysfunction. Nitroglycerin (GTN) is bioactivated by the mitochondrial aldehyde dehydrogenase (ALDH-2) that is directly inhibited by GTN or indirectly inactivated by GTN-triggered mitochondrial ROS formation. Since the stimulatory effect of GTN on ROS formation is independent of ALDH-2 function (GTN induces ROS in the presence of sensitive ALDH-2 inhibitors), it may be assumed that ROS originate from direct interaction of GTN with mitochondrial proteins, probably components of the respiratory chain. Most likely, GTN causes uncoupling of complex I (16) or interacts with complex II and III. Increased ROS formation in response to GTN in vivo treatment was observed in the presence of the mitochondrial substrates malate/glutamate (M/G), α -ketoglutarate (α KG), malate/oxaloacetate which decays to pyruvate (M/O) and succinate (Succ). These signals could be further increased by antimycin A (AA). Dihydrolipoic acid (DHLA) is able to reactivate ALDH-2 upon GTN or ROS challenges and the mitochondria-targeted antioxidant MitoO was able to prevent GTN-induced ROS formation and tolerance. Most interestingly, the present and previous results

provide strong evidence that GTN-induced mitochondrial ROS/RNS are transported outside the mitochondrium, where it may activate vascular Nox through a PKC-dependent process, inhibit important vascular signalling enzymes such as soluble guanylyl cyclase (sGC), endothelial NO synthase (eNOS) and prostacyclin synthase (PGI₂-S), all of which contributes to cross-tolerance (GTN-induced endothelial dysfunction). The latter processes are inhibited by vitamin C and apocynin, whereas mitochondrial ROS formation and release are prevented by rotenone (Rot) and cyclosporine A (CsA).

the vascular NADPH oxidase, as evidenced by the strong inhibitory effect of apocynin on vascular oxidative stress, remains obscure. Previous experimental studies have shown that increased oxidative stress in cellular tissue per se is able to activate the oxidase in a positive feedback fashion (17). Thus, GTNinduced mitochondrial superoxide production may cause a secondary activation of Nox. One may also speculate that via its hypotensive action, GTN may cause an activation of the renin-angiotensin-aldosterone system (35), leading to increased circulating levels of angiotensin-II and aldosterone, and therefore to an activation of the NADPH oxidase. This concept is further corroborated by the demonstration that in vivo treatment with an AT₁ receptor blocker was able to prevent the development of GTN-induced endothelial dysfunction in an animal model of nitrate tolerance (24). In addition, our present findings could explain why treatment with an AT₁ receptor blocker was not able to prevent the development of GTN-induced nitrate tolerance in human subjects (31, 29).

The present study demonstrated that mitochondria are an important source of oxidative stress in the setting of nitrate tolerance and are critically involved in the pharmacology of nitrate tolerance. Importantly, nitrate tolerance was not affected by the Nox inhibitor apocynin or knockout of NADPH oxidase subunits. These observations clearly point to a dominant role of mitochondrial ROS/RNS for the development and maintenance

of nitrate tolerance. In contrast, GTN-induced cross tolerance to the endothelial dependent vasodilator acetylcholine (e.g., endothelial dysfunction) was markedly attenuated in vessels from mice deficient in the critically important NADPH oxidase subunits gp91phox and p47phox and in animals co-treated with the NADPH oxidase inhibitor apocynin. This finding provides strong evidence for the crucial role of the NADPH oxidase in the development of endothelial dysfunction in chronic nitroglycerin treatment. Most interestingly, endothelial dysfunction could be attenuated either by blocking the formation of ROS at complex I of the mitochondrial respiratory chain or by hindering oxygen radicals from leaving the mitochondrion by blocking the mitochondrial permeability transition pore. There seems to be crosstalk of oxygen radicals between two distinct sources of oxidative stress with distinct mechanistic effects (i.e., mitochondria being responsible for nitrate tolerance and NADPH oxidase being responsible for endothelial dysfunction). In this crosstalk, the activation of the vascular NADPH oxidase seems to be driven by ROS/RNS derived from the mitochondrial respiratory chain. Recently, Dikalov and co-workers reported on a similar crosstalk between mitochondria and NADPH oxidases (in both directions) in angiotensin-II induced hypertension (13).

With the knowledge of our present findings, investigators will be encouraged to identify other examples of crosstalk between mitochondrial and Nox-dependent sources of ROS in var-

ious disease states of vascular oxidative stress. It is well established that vascular NADPH oxidase is a primary source of superoxide formation in cardiovascular disease (19, 20) and Noxderived ROS may stimulate mitochondrial ROS formation (5). However, the concept of mitochondrial-triggered activation of NADPH oxidases is novel and is made more attractive for other researchers by the results of the current study. Additionally, the differential effects of distinct sources of oxygen radicals implicate the importance of targeted antioxidant strategies. In the setting of nitroglycerin-triggered vascular dysfunction, future strategies to prevent GTN-induced side effects should therefore target mitochondrial as well as Nox-dependent oxidative stress or interfere with the crosstalk of ROS between mitochondria and Nox.

ACKNOWLEDGMENTS

The authors thank Dr. Dröse for helpful discussions as well as Jörg Schreiner, Merle Götz, Nicole Schramm, and Katalin Palfi for expert technical assistance. The present work was supported by continuous funding by the German Research Foundation (DFG) (SFB 553 - C17 to AD and TM and BR1839/2-3 and BR1839/3-1 to RB), by MAIFOR grants and Forschungsfonds from the Johannes Gutenberg University and Hospital (to AD, MO, and PW), and by the European Vascular Genomic Network, a Network of Excellence supported by the European Community's sixth Framework Program (Contract N⁰ LSHM-CT-2003-503254). This paper contains results that are part of the doctoral thesis of Jennifer M. Dias Wickramanayake.

ABBREVIATIONS

ACh, acetylcholine; ALDH-2, mitochondrial aldehyde dehydrogenase; CsA, cyclosporine A; GTN, glyceryl trinitrate (nitroglycerin); L-012, 8-amino-5-chloro-7-phenylpyrido[3,4-d] pyridazine-1,4-(2H,3H)dione sodium salt; Mn-SOD, manganese superoxide dismutase (mitochondrial isoform); Mn-SOD+/-, heterozygous Mn-SOD deficiency; mPTP, mitochondrial permeability transition pore; Nox, NADPH oxidase; PMA, phorbol myristate; RNS, reactive nitrogen species; ROS, reactive oxygen species.

REFERENCES

- Abou-Mohamed G, Johnson JA, Jin L, El-Remessy AB, Do K, Kaesemeyer WH, Caldwell RB, and Caldwell RW. Roles of superoxide, peroxynitrite, and protein kinase C in the development of tolerance to nitroglycerin. *J Pharmacol Exp Ther* 308: 289–299, 2004.
- Abrams J. The role of nitrates in coronary heart disease. Arch Intern Med 155: 357–364, 1995.
- Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, and Brandes RP. Direct interaction of the novel Nox proteins with p22^{phox} is required for the formation of a functionally active NADPH oxidase. *J Biol Chem* 279: 45935–45941, 2004.
- Beckman JS and Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424– 1437, 1996.

 Brandes RP. Triggering mitochondrial radical release: a new function for NADPH oxidases. *Hypertension* 45: 847–848, 2005.

- Chen Z, Foster MW, Zhang J, Mao L, Rockman HA, Kawamoto T, Kitagawa K, Nakayama KI, Hess DT, and Stamler JS. An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. *Proc Natl Acad Sci USA* 102: 12159–12164, 2005.
- Chen Z, Zhang J, and Stamler JS. Identification of the enzymatic mechanism of nitroglycerin bioactivation. *Proc Natl Acad Sci USA* 99: 8306–8311, 2002.
- Daiber A, August M, Baldus S, Wendt M, Oelze M, Sydow K, Kleschyov AL, and Munzel T. Measurement of NAD(P)H oxidasederived superoxide with the luminol analogue L-012. Free Radic Biol Med 36: 101–111, 2004.
- Daiber A, Oelze M, August M, Wendt M, Sydow K, Wieboldt H, Kleschyov AL, and Munzel T. Detection of superoxide and peroxynitrite in model systems and mitochondria by the luminol analogue L-012. Free Radic Res 38: 259-269, 2004.
- Daiber A, Oelze M, Coldewey M, Bachschmid M, Wenzel P, Sydow K, Wendt M, Kleschyov AL, Stalleicken D, Ullrich V, Mulsch A, and Munzel T. Oxidative stress and mitochondrial aldehyde dehydrogenase activity: a comparison of pentaerythritol tetranitrate with other organic nitrates. *Mol Pharmacol* 66: 1372– 1382, 2004.
- 11. Daiber A, Oelze M, Coldewey M, Kaiser K, Huth C, Schildknecht S, Bachschmid M, Nazirisadeh Y, Ullrich V, Mulsch A, Munzel T, and Tsilimingas N. Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with congestive heart failure. Biochem Biophys Res Commun 338: 1865–1874, 2005.
- Daiber A, Oelze M, Sulyok S, Coldewey M, Schulz E, Treiber N, Hink U, Mulsch A, Scharffetter–Kochanek K, and Munzel T. Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD+/-): a novel approach to assess the role of oxidative stress for the development of nitrate tolerance. *Mol Pharmacol* 68: 579–588, 2005.
- Doughan AK, Harrison DG, and Dikalov SI. Molecular mechanisms of angiotensin II mediated mitochondrial dysfunction. Linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102: 488–496, 2007.
- Drose S, Brandt U, and Hanley PJ. K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling. *J Biol Chem* 281: 23733– 23739, 2006.
- Dupuis J, Lalonde G, Lemieux R, and Rouleau JL. Tolerance to intravenous nitroglycerin in patients with congestive heart failure: role of increased intravascular volume, neurohumoral activation and lack of prevention with N-acetylcysteine. *J Am Coll Cardiol* 16: 923-931, 1990.
- Esplugues JV, Rocha M, Nunez C, Bosca I, Ibiza S, Herance JR, Ortega A, Serrador JM, D'Ocon P, and Victor VM. Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants. Circ Res 99: 1067–1075, 2006.
- 17. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Qt, Taylor WR, Harrison DG, de Leon H, Wilcox JN, and Griendling KK. p22^{phox} mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. *Circ Res* 80: 45–51, 1997.
- Gori T, Di Stolfo G, Sicuro S, Dragoni S, Lisi M, Forconi S, and Parker JD. Nitroglycerin protects the endothelium from ischaemia and reperfusion: human mechanistic insight. *Br J Clin Pharmacol* 64: 145–150, 2007.
- Griendling KK and FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108: 1912–1916, 2003.
- Griendling KK and FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: animal and human studies. *Circulation* 108: 2034–2040, 2003.
- Hink U, Oelze M, Kolb P, Bachschmid M, Zou MH, Daiber A, Mollnau H, August M, Baldus S, Tsilimingas N, Walter U, Ullrich V, and Munzel T. Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate tolerance. *J Am Coll Cardiol* 42: 1826– 1834, 2003.
- Janiszewski M, Souza HP, Liu X, Pedro MA, Zweier JL, and Laurindo FR. Overestimation of NADH-driven vascular oxidase ac-

- tivity due to lucigenin artifacts. Free Radic Biol Med 32: 446–453, 2002.
- 23. Kelm M, Dahmann R, Wink D, and Feelisch M. The nitric oxide/superoxide assay. Insights into the biological chemistry of the NO/O-2. interaction. *J Biol Chem* 272: 9922–9932, 1997.
- Kurz S, Hink U, Nickenig G, Borthayre AB, Harrison DG, and Munzel T. Evidence for a causal role of the renin-angiotensin system in nitrate tolerance. *Circulation* 99: 3181–3187, 1999.
- Lavigne MC, Malech HL, Holland SM, and Leto TL. Genetic demonstration of p47phox-dependent superoxide anion production in murine vascular smooth muscle cells. *Circulation* 104: 79–84, 2001.
- Li JM and Shah AM. Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase. *Cardiovasc Res* 52: 477–486, 2001.
- 27. Li Y, Zhang D, Jin W, Shao C, Yan P, Xu C, Sheng H, Liu Y, Yu J, Xie Y, Zhao Y, Lu D, Nebert DW, Harrison DC, Huang W, and Jin L. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. *J Clin Invest* 116: 506–511, 2006.
- Livak KJ and Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25: 402–408, 2001.
- Longobardi G, Ferrara N, Leosco D, Abete P, Furgi G, Cacciatore F, Corbi G, Pescatore R, and Rengo F. Angiotensin II-receptor antagonist losartan does not prevent nitroglycerin tolerance in patients with coronary artery disease. *Cardiovasc Drugs Ther* 18: 363–370, 2004.
- Mackenzie IS, Maki-Petaja KM, McEniery CM, Bao YP, Wallace SM, Cheriyan J, Monteith S, Brown MJ, and Wilkinson IB. Aldehyde dehydrogenase 2 plays a role in the bioactivation of nitroglycerin in humans. *Arterioscler Thromb Vasc Biol* 25: 1891–1895, 2005.
- Milone SD, Azevedo ER, Forster C, and Parker JD. The angiotensin II-receptor antagonist losartan does not prevent hemodynamic or vascular tolerance to nitroglycerin. *J Cardiovasc Pharmacol* 34: 645–650... 1999.
- 32. Mollnau H, Wenzel P, Oelze M, Treiber N, Pautz A, Schulz E, Schuhmacher S, Reifenberg K, Stalleicken D, Scharffetter–Kochanek K, Kleinert H, Munzel T, and Daiber A. Mitochondrial oxidative stress and nitrate tolerance–comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/– mice. BMC Cardiovasc Disord 6: 44, 2006.
- Munzel T, Daiber A, and Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ Res 97: 618–628, 2005.
- Munzel T, Giaid A, Kurz S, Stewart DJ, and Harrison DG. Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. *Proc Natl Acad Sci* 92: 5244–5248, 1995.
- Munzel T, Heitzer T, Kurz S, Harrison DG, Luhman C, Pape L, Olschewski M, and Just H. Dissociation of coronary vascular tolerance and neurohormonal adjustments during long-term nitroglycerin therapy in patients with stable coronary artery disease. J Am Coll Cardiol 27: 297–303, 1996.
- Munzel T, Kurz S, Rajagopalan S, Thoenes M, Berrington WR, Thompson JA, Freeman BA, and Harrison DG. Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. *J Clin Invest* 98: 1465–1470, 1996.
- 37. Munzel T, Li H, Mollnau H, Hink U, Matheis E, Hartmann M, Oelze M, Skatchkov M, Warnholtz A, Duncker L, Meinertz T, and Forstermann U. Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res 86: E7–E12, 2000.
- Munzel T, Sayegh H, Freeman BA, Tarpey MM, and Harrison DG. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and crosstolerance. J Clin Invest 95: 187–194, 1995.
- Needleman P and Hunter FE, Jr. Effects of organic nitrates on mitochondrial respiration and swelling: possible correlations with the mechanism of pharmacologic action. *Mol Pharmacol* 2: 134–143, 1066
- Packer M, Lee WH, Kessler PD, Gottlieb SS, Medina N, and Yushak M. Prevention and reversal of nitrate tolerance in patients with congestive heart failure. N Engl J Med 317: 799–804, 1987.

- Parker JD, Farrell B, Fenton T, Cohanim M, and Parker JO. Counter-regulatory responses to continuous and intermittent therapy with nitroglycerin. *Circulation* 84: 2336–2345, 1991.
- Raha S, McEachern GE, Myint AT, and Robinson BH. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic Biol Med 29: 170–180, 2000.
- 43. Schulz E, Tsilimingas N, Rinze R, Reiter B, Wendt M, Oelze M, Woelken–Weckmuller S, Walter U, Reichenspurner H, Meinertz T, and Munzel T. Functional and biochemical analysis of endothelial (dys)function and NO/cGMP signaling in human blood vessels with and without nitroglycerin pretreatment. *Circulation* 105: 1170–1175, 2002.
- Schwemmer M and Bassenge E. New approaches to overcome tolerance to nitrates. Cardiovasc Drugs Ther 17: 159–173, 2003.
- Sydow K, Daiber A, Oelze M, Chen Z, August M, Wendt M, Ullrich V, Mulsch A, Schulz E, Keaney JF Jr., Stamler JS, and Munzel T. Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest 113: 482–489, 2004.
- Szocs K, Lassegue B, Wenzel P, Wendt M, Daiber A, Oelze M, Meinertz T, Munzel T, and Baldus S. Increased superoxide production in nitrate tolerance is associated with NAD(P)H oxidase and aldehyde dehydrogenase 2 downregulation. *J Mol Cell Car*diol 42: 1111–1118, 2007.
- 47. Warnholtz A, Mollnau H, Heitzer T, Kontush A, Moller–Bertram T, Lavall D, Giaid A, Beisiegel U, Marklund SL, Walter U, Meinertz T, and Munzel T. Adverse effects of nitroglycerin treatment on endothelial function, vascular nitrotyrosine levels and cGMP-dependent protein kinase activity in hyperlipidemic Watanabe rabbits. J Am Coll Cardiol 40: 1356–1363, 2002.
- 48. Wenzel P, Hink U, Oelze M, Schuppan S, Schaeuble K, Schild-knecht S, Ho KK, Weiner H, Bachschmid M, Munzel T, and Daiber A. Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity: Implications for mitochondrial oxidative stress and nitrate tolerance. *J Biol Chem* 282: 792–799, 2007.
- 49. Wenzel P, Hink U, Oelze M, Seeling A, Isse T, Bruns K, Steinhoff L, Brandt M, Kleschyov AL, Schulz E, Lange K, Weiner H, Lehmann J, Lackner KJ, Kawamoto T, Munzel T, and Daiber A. Number of nitrate groups determines reactivity and potency of organic nitrates: a proof of concept study in ALDH-2-/- mice. Brit J Pharmacol 150: 526–533, 2007.
- Wenzel P, Oelze M, Coldewey M, Hortmann M, Seeling A, Hink U, Mollnau H, Stalleicken D, Weiner H, Lehmann J, Li H, Forstermann U, Munzel T, and Daiber A. Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates. Arterioscler Thromb Vasc Biol 27: 1729–1735, 2007.
- Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez– Vivar J, and Kalyanaraman B. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. *Proc Natl Acad Sci USA* 102: 5727–5732, 2005.

Address reprint requests to:
Dr. Andreas Daiber
Klinikum der Johannes Gutenberg-Universität Mainz
II. Medizinische Klinik: Labor für Molekulare Kardiologie
Verfügungsgebäude für Forschung und
Entwicklung, Raum 00349
Obere Zahlbacher Str. 63
55101 Mainz, Germany

E-mail: daiber@uni-mainz.de

Date of first submission to ARS Central, November 1, 2007; date of final revised submission, February 7, 2008; date of acceptance, February 8, 2008.

This article has been cited by:

- 1. Eberhard Schulz, Philip Wenzel, Thomas Münzel, Andreas Daiber. Mitochondrial Redox Signaling: Interaction of Mitochondrial Reactive Oxygen Species with Other Sources of Oxidative Stress. *Antioxidants & Redox Signaling*, ahead of print. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 2. Alex F. Chen, Dan#Dan Chen, Andreas Daiber, Frank M. Faraci, Huige Li, Christopher M. Rembold, Ismail Laher. 2012. Free radical biology of the cardiovascular system. *Clinical Science* **123**:2, 73-91. [CrossRef]
- 3. M. Oelze, M. Knorr, S. Kroller-Schon, S. Kossmann, A. Gottschlich, R. Rummler, A. Schuff, S. Daub, C. Doppler, H. Kleinert, T. Gori, A. Daiber, T. Munzel. 2012. Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression. *European Heart Journal*. [CrossRef]
- 4. Susanne Karbach, Thomas Jansen, Sven Horke, Tjebo Heeren, Alexander Scholz, Meike Coldewey, Angelica Karpi, Michael Hausding, Swenja Kröller-Schön, Matthias Oelze, Thomas Münzel, Andreas Daiber. 2012. Hyperglycemia and oxidative stress in cultured endothelial cells a comparison of primary endothelial cells with an immortalized endothelial cell line. *Journal of Diabetes and its Complications* 26:3, 155-162. [CrossRef]
- 5. Markus M. Bachschmid, Stefan Schildknecht, Reiko Matsui, Rebecca Zee, Dagmar Haeussler, Richard A. Cohen, David Pimental, Bernd van der Loo. 2012. Vascular aging: Chronic oxidative stress and impairment of redox signaling—consequences for vascular homeostasis and disease. *Annals of Medicine* 1-20. [CrossRef]
- 6. Andreas Daiber, Matthias Oelze, Philip Wenzel, Franziska Bollmann, Andrea Pautz, Hartmut Kleinert. 2012. Heme Oxygenase-1 Induction and Organic Nitrate Therapy: Beneficial Effects on Endothelial Dysfunction, Nitrate Tolerance, and Vascular Oxidative Stress. *International Journal of Hypertension* **2012**, 1-13. [CrossRef]
- 7. Thomas Münzel, Tommaso GoriOxidative Stress, Endothelial Dysfunction, and Its Impact on Smooth Muscle Signaling 1219-1229. [CrossRef]
- 8. Michael E. Widlansky, David D. Gutterman. 2011. Regulation of Endothelial Function by Mitochondrial Reactive Oxygen Species. *Antioxidants & Redox Signaling* **15**:6, 1517-1530. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 9. Tae Gyu Choi, Jisun Lee, Joohun Ha, Sung Soo Kim. 2011. Apoptosis signal-regulating kinase 1 is an intracellular inducer of p38 MAPK-mediated myogenic signalling in cardiac myoblasts. *Biochimica et Biophysica Acta (BBA) Molecular Cell Research* **1813**:8, 1412-1421. [CrossRef]
- 10. N. Prinz, N. Clemens, D. Strand, I. Putz, M. Lorenz, A. Daiber, P. Stein, A. Degreif, M. Radsak, H. Schild, S. Bauer, P. von Landenberg, K. J. Lackner. 2011. Antiphospholipid-antibodies induce translocation of TLR7 and TLR8 to the endosome in human monocytes and plasmacytoid dendritic cells. *Blood*. [CrossRef]
- 11. Sergey Dikalov. 2011. Cross talk between mitochondria and NADPH oxidases. Free Radical Biology and Medicine . [CrossRef]
- 12. Tommaso Gori, Thomas Münzel. 2011. Oxidative stress and endothelial dysfunction: Therapeutic implications. *Annals of Medicine* **43**:4, 259-272. [CrossRef]
- 13. Shakil A. Khan , Jayasri Nanduri , Guoxiang Yuan , Brian Kinsman , Ganesh K. Kumar , Joy Joseph , Balaraman Kalyanaraman , Nanduri R. Prabhakar . 2011. NADPH Oxidase 2 Mediates Intermittent Hypoxia-Induced Mitochondrial Complex I Inhibition: Relevance to Blood Pressure Changes in Rats. Antioxidants & Redox Signaling 14:4, 533-542. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 14. Zhenghang Zhao, Nadezhda Fefelova, Mayilvahanan Shanmugam, Peter Bishara, Gopal J. Babu, Lai-Hua Xie. 2011. Angiotensin II induces afterdepolarizations via reactive oxygen species and calmodulin kinase II signaling. *Journal of Molecular and Cellular Cardiology* 50:1, 128-136. [CrossRef]
- 15. Andrew Liuni, Mary Clare Luca, Giuseppe Di Stolfo, Amar Uxa, Justin A. Mariani, Tommaso Gori, John D. Parker. 2011. Coadministration of Atorvastatin Prevents Nitroglycerin-Induced Endothelial Dysfunction and Nitrate Tolerance in Healthy Humans. *Journal of the American College of Cardiology* 57:1, 93-98. [CrossRef]
- 16. Yang Wang, Shelley X.L. Zhang, David Gozal. 2010. Reactive oxygen species and the brain in sleep apnea#. *Respiratory Physiology & Neurobiology* **174**:3, 307-316. [CrossRef]
- 17. Amadou K.S. Camara, Edward J. Lesnefsky, David F. Stowe. 2010. Potential Therapeutic Benefits of Strategies Directed to Mitochondria. *Antioxidants & Redox Signaling* 13:3, 279-347. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 18. Thomas Jansen, Marcus Hortmann, Matthias Oelze, Benjamin Opitz, Sebastian Steven, Richard Schell, Maike Knorr, Susanne Karbach, Swenja Schuhmacher, Philip Wenzel. 2010. Conversion of biliverdin to bilirubin by biliverdin reductase contributes

- to endothelial cell protection by heme oxygenase-1—evidence for direct and indirect antioxidant actions of bilirubin. *Journal of Molecular and Cellular Cardiology* **49**:2, 186-195. [CrossRef]
- 19. Milad S. Bitar, Adel K. Ayed, Samy M. Abdel-Halim, Esma R. Isenovic, Fahd Al-Mulla. 2010. Inflammation and apoptosis in aortic tissues of aged type II diabetes: Amelioration with #-lipoic acid through phosphatidylinositol 3-kinase/Akt-dependent mechanism. *Life Sciences* 86:23-24, 844-853. [CrossRef]
- 20. Andreas Daiber. 2010. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. *Biochimica et Biophysica Acta (BBA) Bioenergetics* **1797**:6-7, 897-906. [CrossRef]
- 21. Matthias Oelze, Swenja Schuhmacher, Andreas Daiber. 2010. Organic Nitrates and Nitrate Resistance in Diabetes: The Role of Vascular Dysfunction and Oxidative Stress with Emphasis on Antioxidant Properties of Pentaerithrityl Tetranitrate. *Experimental Diabetes Research* 2010, 1-13. [CrossRef]
- 22. A. Daiber, P. Wenzel, M. Oelze, S. Schuhmacher, T. Jansen, T. Münzel. 2009. Mitochondrial aldehyde dehydrogenase (ALDH-2)—Maker of and marker for nitrate tolerance in response to nitroglycerin treatment. *Chemico-Biological Interactions* 178:1-3, 40-47. [CrossRef]
- 23. P. Wenzel, S. Schuhmacher, J. Kienhofer, J. Muller, M. Hortmann, M. Oelze, E. Schulz, N. Treiber, T. Kawamoto, K. Scharffetter-Kochanek, T. Munzel, A. Burkle, M. M. Bachschmid, A. Daiber. 2008. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. *Cardiovascular Research* 80:2, 280-289. [CrossRef]
- Alexander Jabs, Sebastian Göbel, Philip Wenzel, Andrei L. Kleschyov, Marcus Hortmann, Matthias Oelze, Andreas Daiber, Thomas Münzel. 2008. Sirolimus-Induced Vascular Dysfunction. *Journal of the American College of Cardiology* 51:22, 2130-2138. [CrossRef]